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3 UNIDADES

Agrarias

Ha (hectare) = Hm? (hectdometro quadrado)
a(are) = Dm? (decametro quadrado)

ca (centiare) = m? (metro quadrado)

Inglesas

1 milha = 1852m (milha nautica)

1 milha = 1609m (milha terrestre)
nudo = milha/hora

Distancia
Jarda 3 pés
pé 12 polegadas
pé 305 mm
Superficie
pé? 9,3dm?
4046 m?

Peso
| 454 g
Capacidade
| 4,54 litros

EQUIVALENCIAS NO SISTEMA METRICO
CAPACIDADE MASSA VOLUME
Kl Tm m3

Hl Qm
Dl Mg
l Kg
dl Hg
cl Dg

ml g

dg
cg
mg

5 CLASSIFICACAO DOS NUMEROS

Naturais
Inteiros Zero
Racionais Negativos
Positivos
Negativos

Positivos {

Reais

Fracionarios {

Irracionais

6 ELEMENTOS DE UMA DIVISAO
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D =dq., — R,

D = dividendo

qr = Quociente por falta
Ry = Resto por falta

d = Divisor

qe = Quociente por excesso
R, = Resto por excesso

6 = quociente por falta
20 I3 q por f

2 6 2 = resto por falta

7 = quociente por excesso
20 |3

_1 7 1 = resto por excesso

7 DIVISAO PROPORCIONAL

a) Dividir N em partes diretamente proporcionaisa a, b, c:
X Yy z x+y+z N

a b ¢ a+b+c a+b+c
b) Dividir N em partes inversamente proporcionaisa a, b, c:
y z x+y+tz Nabc

“1° 171 1 1 ab+ac+bc
b ¢ a'bte

8 CLASSIFICACAO DOS SISTEMAS LINEARES

Compatl’veis{

determinados — soluc¢do Unica

. lindeterminados — infinitas solugdes
Sistemas{ (¢/s0tusa0)

Incompativeis
(s/solugio)

Ax + By =C
Ax+B'y=C

Dado o sistema: {

A B C ’ .
Se YTl T compativel determinado — duas retas que se cortam.

A c (o : .
Se yriml- i compativel indeterminado — duas retas coincidentes.

A B C . ’ ,
Se o =3 * o = incompativeis — duas retas paralelas.

9 ARITMETICA COMERCIAL

Jj = juros C = capital i=taxa d = desconto M = montante

N = valor noinal do titulo a ser pago E = valor atual
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d="2 E=N—-d M=C.(1+it)

M=C+j

10 PROPORCOES

a __ a+tb+c
a’'+b'+cr

(a',b'ec'"+#0 e b,d #0)

Propriedade fundamental: - Se% = 2 —ad =cb

11 FRACOES GERATRIZES

Decimal exata: (tantos zeros quanto as casas decimais)

Periddica pura: = 99_ (tantos noves quanto as casas decimais)

Periddica mista: cd = — (tantos noves quanto o numero de casa do periodo e tantos

zeros quanto o numero de casas do anteperiodo - cd = periodo, b = anteperiodo)

12 IDENTIDADES NOTAVEIS

(a + b)? = a® + 2ab + b?

(a — b)? = a? — 2ab + b?

(a + b)(a — b) = a? — b?

(a + b)3 = a3+ 3a?b + 3ab? + b3
(a — b)3 = a3 —3a?b + 3ab? — b3
a® + b3 = (a+b)(a? —ab + b?)
a® — b3 = (a—b)(a? + ab + b?)

13 MEDIAS
Média aritmética:

a+b+c+-
N

N=tantos nimeros quantas forem as parcelas da soma.

Média Geométrica:

Va.b.c. ...

m=nUmero de termos.
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14 SISTEMAS E EQUACOES LINEARES
C — By
Ax+By=C)*T74  C-By (' -BYy
Ax+B'y= C’}x A A

{equacido do 12 grau

AI
15 EQUACAO DO 22 GRAU
—b +Vb? — 4ac

ax’+bx+c=0=x=
2a
x(ax+b)=0
ax’+bx =0= x; =0
ax+b=0
C

x1= -
a

2+c=0=

c
=7

b P ¢
_x1+x2=__ : X1.-X2 a
a D - x1 - xz
x2=Sx+P=0
x2+Dx—P=0
Discussdo das raizes: A= b%? — 4ac — Discriminante.
Seb? —4ac >0 - x, # x, asraizes sio distintas.
Seb?—4ac=0-x, =x, araizédupla.
Seb?—4ac<0-x, e x, raizesindeterminadas em R,sdo imaginarias.

Formacdo da equacio:

16 EQUACOES IRRACIONAIS

A resolucdao de uma equacao irracional deve ser efetuada procurando transforma-la inicialmente numa
equacao racional, obtida ao elevarmos ambos os membros da equag¢ao a uma poténcia conveniente.

Em seguida, resolvemos a equacao racional encontrada e, finalmente, verificamos se as raizes da
equacdo racional obtidas podem ou ndo ser aceitas como raizes da equacdo irracional dada (verificar a
igualdade).

E necessaria essa verificacdo, pois, ao elevarmos os dois membros de uma equag¢do a uma poténcia,
podem aparecer na equacdo obtida raizes estranhas a equagdo dada.

17 TRINOMIO DO 22 GRAU
y = ax? + bx + c (sua representacdo grafica é uma parabola)
Py(x4;0)
P,(x; 0)
Intersegdo com o eixo y P;(0; c) c=termo independente.
b
Xog = ——

Vértice ZAa Vértice é o ponto onde a parabola faz a volta.

Yo=—

4a
Sea > 0 O vértice é o ponto mais baixo e a concavidade esta voltada para cima (ponto de minimo).

Interse¢ao com o eixo x { {x, e x,sdo as raizes da equacdo ax?+bx+c=0
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e Sea < 0 O vértice é o ponto mais alto e a concavidade esta voltada para baixo (ponto de maximo).

18 RADICAIS

Va=b=b"=a
Soma: 3Va +5%a = (3+5)Va=8Va
Poténcia: (%)p = Va?
Produto: Va. Vb =Va.b
Raiz: VNa="Va

Na_ nfa

b Alb

Extracdo: Va*.b = a /b

Racionalizacdo:
1 Va +Va

Vi Va a

__a b-vE_o(fB-F)

Vb++ve Vb+ve Vb-vc  b-c
Vb —+/c chama-se bindmio conjugado de Vb + /¢

19 POTENCIAS
a® =a.a.a.a.....a (nvezes)
Soma: 3a™ + 5a™ = (3 + 5)a™ = 8a™
Produto: a™. aP = q*p)
Quociente: a™:aP? = a™P
Poténcia:

Quociente:

COLET
n

ap = Yan
1

at=—

an
a®=1
al=a

(a.b.c)™ =a™. b™. c"
n

n
& -5

20 DECOMPOSICAO DE UM POLINOMIO EM FATORES

y=apx"+ax" +ax" 4+ -+ a,_1.x+ ay

Sendo x4, X5, X3 ... X, as raizes que podem ser obtidas pela regra de Ruffini.
y = ao(x —x1)(x — x2) (x — x3) ... (x — xp)

Caso particular -y = ax? + bx + ¢ = a(x — x1)(x — x3)
21 ANALISE COMBINATORIA

21.1 Permutacdes
Duas sequéncias distintas se diferenciam pela ordem de colocacdo.

P,=nl=n(n—-1)(n-2)..3.21

n! Se |é n fatorial.
Ps =5!=543.21

21.2 Arranjos
As sequéncias distintas se diferenciam por algum elemento ou pela ordem de coloca¢do. (ordem e natureza)
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At =m(m—-1)(m—-2)..(m—n+1) —n fatores
Al, =10.9.8.7.6.5.4
21.3 Combinagdes
As ordenadas distintas se diferenciam por algum elemento. A ordem de colocacdo é indiferente.
Arﬁl _ (m) m!

Ch = —— = =
™ P, n/  (m-—n)!n!

m ~
n selé msobren

21.4 Permutac6es circulares
Maneiras de colocar n elementos em um circulo.
Pn=(mn-1)!

21.5 Formulas importantes

21.6 Férmula de newton
(a+x)" =

22 PROGRESSOES

22.1 Progressdes aritméticas
A diferenca entre um termo qualquer e seu anterior é constante. (r)
aq; az; ..a,
a, =a,(n—Dr
a=a,—(n—Dr

a, +a,
S =
2
S=a.n
a. = termo central
A soma dos termos equidistantes dos extremos é constante.
Interpolacdo:
Para interpolar p nimeros entre a e b.
b—a

d= m = (razao de interpolagio)

22.2 ProgressGes geométricas
O quociente entre um termo qualquer e seu anterior é constante. (q)
aq; ay; ... Ay
a, = a;.q" 1!
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P =./(a;.ap)™
pP= vV (ac)n
loga, — loga,
B 2
O quociente dos termos equidistantes dos extremos é constante.

~ , . . . a
Se q (razdo) é menor que 1 a soma tem infinitos elementos e vale: S = —

1-q

. . p+1p
Para interpolar p nUmeros entrea e b: q = \/;

23 OPERACOES NA FORMA BINOMICA (NUMEROS COMPLEXOS)

Soma: (a + bi) + (c +di) = [(a+c) + (b + d)i]
Produto: (a + bi).(c + di) = (ac — bd) + (bc + ad)i
a+bi _ a+bi c—di _ ac+bd | bc-ad

c+di  c+di'c—di  c2+d? @ c2+d? L
Poténcia: (a + bi)™ se resolve por Newton.

Quociente:

i2=-1

i=v-1

i?=-1

24 NUMEROS COMPLEXOS

A
A Z = pw (forma polar)

Z = a + bi (forma binémica)
Z = p(cosw + isenw) (forma
trigonométrica)

o ponto A se chama dfixo.
mddulo p = Va? + b?

b
argumento w:  tgw =~

25 OPERACOES NA FORMA TRIGONOMETRICA

e Soma: se faz sempre na forma bindmica

Z, = p(cosw + isenw)
Z, = p'(cosw' + isenw")
e Produto:
Z1.Z, = pp'[cos(w + w") + isen(w + w")]
e Quociente:
Zq P

[cos(w — w") + isen(w — w")]

ZZ1
e Poténcia:
Z™ = p"[cosnw + isennw]

26 RAIZ DE UM COMPLEXO
7 = % [cos ann+ W + isen 2k + w
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Representacdo grafica das raizes

Para K = 0;
R, = ’{/ﬁ [cos% + isen %]

A w ..
Desenha-se o angulo g Divide-se a
circunferéncia em n partes que se desenham a

partir de A.
r="4p

27 LOGARITMOS

log,B=x—->a*=B
loga.b = loga + logb

a
log 5= loga — logb

loga™ = nloga

1
logh/a = - loga

1
cologa = loga = —loga
logl =0
log0 = —o0

Mudanca de base: log,B = logcB

logca
Logaritmo neperiano (L) é o logaritmo no sistema de base e.

1 n
e=lim(1+—>
n

log20 = 1,301030
1 = caracteristica
301030 = mantissa

Se o nimero tem n cifras sua caracteristica serd n — 1. Quando no logaritmo nao vem expressa a base se supde
log,o(base 10).

27.1 Propriedades operatdrias
log,A.B = log,A +log,B
logaﬁ = log,A —log,B

log,A™ = m.log,A
log, VA = %logaA
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27.2 Graficos da funcdo logaritmo

x>1<log,x >0
“>1%<x<1@uwﬂ<o 0<a<1{

Y Y,
-I\

1

0<x<1elog,x>0
x>1olog,x <0

27.3 Exponenciais

fix - a* arealea>0ea#1

v Y

_// 1

o X

D| X

a>1,x <x, ©a*t <a* 0<a<lx <x,©a*>a*
Funcdo crescente Funcdo decrescente

28 GEOMETRIA ELEMENTAR

28.1 Teorema de tales

a b

28.2 Segmento paralelo a um lado de um tridangulo
A

AABC~AAPQ
AB _AC _BC
AP AQ PQ
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28.3 Pontos e propriedades de um tridngulo

circuncentro
incentro
baricentro
ortocentro

eixos de simetria

bissetrizes
medianas
alturas
mediatrizes

ORTOCENTRO

Intersecdo das alturas.

. ortocentro

(N0

CIRCUNCENTRO

Intersecdo das mediatrizes - Centro da
circunferéncia circunscrita

c
k.
i

1

]

]

I
-

-

"‘\\C = Circuncentro

—

INCENTRO

Intersecdo das bissetrizes — Centro da
circunferéncia inscrita.

I = Incentro

BARICENTRO

~ . L1 - 2
Interse¢do das medianas. Dista 3 do vértice e 3
do lado.

A+B+C=180°
a+b+c=2p
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Medianas

1
mg = E\/sz + 2¢? —a?

1
my, = E\/Zaz + 2¢? — b2

1
m, = E\/Zaz +2b? — 2

28.4 Triangulos obliquos

b? = a? + c? — 2ac(cosB)

b b? = a? + ¢? — 2ac/,
¢ b? = a?+ ¢ — 2cd,
¢’ ,= projecdo de c sobre a.
d
A
b
C
I 1
a
c; B C

a’ .= projecdo de a sobre c.
Da mesma forma para os demais lados.

b? = a? + c? + 2ac.cos(180 — B)
b? = a? + ¢ + 2ac',
b? = a%? + c* + 2cd’,

c¢',= projecdo de ¢ sobre a.

a' .= projecdo de a sobre c.

Da mesma forma para os demais lados.

28.5 Triangulos retangulos

Catetos: b2 = a.n
Altura: h> = m.n
, b. h
Area: S = TC Z

2

Teorema de Pitdgoras: a® + b? = c?

AO= mediana sobre a = Raio =%
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A

L C
AB LB
AC ~ LC

28.6 Teorema das bissetrizes
Interna:

B

Externa:

%A\
T B C

AB L'B

AC L'C

28.7 Diagonal de um paralelogramo

D =/2a? + 2b? — d?
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28.8 Quarta harmdnica

B L

Quatro pOI’]tOS em uma reta
BL _BL
CL CL'

28.9 Poténcia de um ponto (P)
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\\ (PT)*=PA;.PB: =PA; . PB,= PA; . PB;

28.10 Construcoes

Quarta proporcional

Terceira proporcional

Média proporcional
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Angulo

Vértice e Lados

Figura Medida

Inscrito

Angulo de segmento

Excéntrico interior

Excéntrico exterior

28.12 Poligonos

Vértice no centro da
circunferéncia

Vértice na
circunferéncia e lados
secantes

Vértice na
circunferéncia e um
lado secanteeo
outro tangente a
circunferéncia

Vértice na regiao
interior da
circunferéncia

Vértice na regido
exterior e lados
secantes ou
tangentesa
circunferéncia

‘e

Soma de todos os angulos:
2nretos

Soma dos angulos internos:
Si =(n-—2).180°
Soma dos angulos externos:

Se =4 retos
Se = 360°

Si = (2n—4)retos.

Poligonos regulares
n

o i="2180°

n

(angulo interno)
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(angulo externo)

(n2 de diagonais)

28.13 Poligonos regulares inscritos

N

X = se¢do aurea

28.15Triedros

Faces: BVA; BVC; CVA

Diedros: a, 8,y

Soma das faces < 4 retos.

Cada face é maior que a diferenca das outras

duas e menor que a soma.

28.16 Poliedros

Nome

N2 faces

Forma das faces

N2 de arestas

N2 de vértices

Dos vértices partem

Tetraedro

4

Triangulos equilateros

6

4

3 arestas

Hexaedro

6

Quadrados

12

8

3 arestas

Octaedro

8

Triangulos equilateros

12

6

4 arestas

Dodecaedro

12

Pentdgono regular

30

20

3 arestas
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| Icosaedro | 20 Triangulos equilateros | 30 | 12 | 5 arestas
Em um poliedro: n2 de faces + n® de vértices=n2de arestas+2 (F +V = A+ 2)

28.17 Lugares geométricos
Lugar geométrico — E um conjunto de pontos que tem uma determinada propriedade, de tal maneira que um
ponto que nao pertenca a este lugar ndo tem a propriedade.
Circunferéncia — Lugar geométrico dos pontos do plano que equidistam de um outro interior chamado centro.
Esfera — Lugar geométrico dos pontos do espaco que equidistam de um outro chamado centro.
Elipse — Lugar geométrico dos pontos do plano cuja soma das distancias a dois pontos fixos é constante.
Hipérbole — Lugar geométrico dos pontos do plano cuja diferenca das distancias a dois pontos fixos é
constante.
Pardbola — Lugar geométrico dos pontos do plano que equidistam de um ponto e de uma reta.
Mediatriz — Lugar geométrico dos pontos do plano que equidistam dos extremos de um segmento.
Bissetriz — Lugar geométrico dos pontos do plano que equidistam dos lados de um angulo.

29 AREAS E VOLUMES

29.1 Areas e volumes (Corpos no plano)
Triangulo qualquer Triangulo retangulo

C

_a+b+c

P=7"

S=Jp—-a).(p—h).(p—¢)

Triangulo equilatero Paralelogramo
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Retangulo Quadrado

Losango Trapézio

S_D.d
)

Quadrilatero irregular Hexagono

Se decompde em triangulos e se acha a area de
cada um.

Poligono regular Circunferéncia

p-ay
s=—2ZF
2

p = perimetro
a, = apétema
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Circulo Arco de circunferéncia

_ 2mrn®
~ 3600

Setor circular Coroa circular

S =mn(R?-1?)

Trapézio circular Seguimento circular

N,

360° Sseg = Osetor — Striéngulo

_ mn°(R? —r?)

Seguimento circular Segmento circular

~_—"

Triangulo
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29.2 Areas e volumes (espaco)
Prisma reto

AN

Prisma obliquo
An

secdo reta

Bz Bj

Piramide regular
d
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Tronco de piramide
b

|/

Se=85+Ss+S,

p = perimetro da base maior
p' = perimetro da base menor

H
vV =§[SB +Sb +1/SB'Sb]

Paralelepipedo retangulo

S = 2ab + 2bc + 2ac

V=ab.c

D =+/a? + b? + c?

S, =2nr (g = geratriz)
S, = 2nrg + 2mr?

V = nr’H

Cilindro obliquo

~7

secdo reta

S, =2mR'g
S, = 2nR'g + 2nR?

V =nR'?H
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Tronco de cone

r

S, =ng(R+r)

ST == SL + 7T(R2 + 7'2)

H
VZ?[R2+T2+RT]

S, =mRg

Cone reto g% = H* + R?

B “ Sy = mRg + mR?
JAAY

Tetraedro regular

O=baricentro

Dodecaedro regular

S = 3a? /25 +10V5

a3
v =—(15+7V5)
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Icosaedro regular

S =5a2V3

5a3
V :E(3 +\/§)

Esfera

B Wy
e :‘\
s o

o el

Segmento de duas bases

Planos
__ Paralelos

segmento esférico
de uma base
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Fuso esférico

fuso esférico
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Anel esférico

(] 4

<

E

30 TRIGONOMETRIA

30.1 Circulo e funcdes trigonométricas

\

sena = EF

cos x= OF

h
D
E
ja¥e
Oj

tg x= AB

ctg x=DC

sec x= OB
cossec x= 0C

OE=R=1

a b b
senA = o senB = o CcoSA = = cosB =

1
secA =——, secB =
COSA cosB

1 1
cossecA = — , cossecB = —
senA senB

tgA __senA th __senB

COSA cosB

, cotgB = Py

1
cotgA = oA

1
t

a
Cc
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30.2 Linhas trigonométricas
Angulo no primeiro quadrante Angulo no segundo quadrante

/ £ 5,

Angulo no terceiro quadrante Angulo no quarto quadrante

30.3 Reducdo ao primeiro gquadrante
22 quadrante

sen(180° — A) = send

sen(180°-A)

cos(180° — A) = —cosA

cos{180°-A)

tg(180° — A) = —tgA

g(180°-A)
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32 quadrante

2(180°+A)
tgA

sen(180° + A) = —send

cos(180°+A)

cos(180° + A) = —cosA

sen(180°-A)

tg(180° + A) = tgA

42 quadrante
senA = —sen(—A) = —sen(360° — A)
cosA = cos(—A) = cos(360° — A)

tgA = —tg(—A) = —tg(360° — A)

Se o0 angulo dado ultrapassa os 360° se divide por
360° usando o resto lancando-o no circulo
trigonométrico e reduzindo-o ao primeiro
guadrante.

sen (-A)

30.4 Angulos complementares

cos(90° — A) = send

cos{90°-A)

tg(90° — A) = cotgA

/ sen(90° — A) = cosA
“0.\ u
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Resumo de Matematica

sen?x + cos’x =1

senx

tgx =
9 CcoSsx

cosx
cotgx =
xenx

1+ tg?x = sec?x

tg?x + 1 = sec’x

1
cos’x =

1+tg?x

1
cosx
1
cossecx = —
x

fax = 1
gx_cotgx

1+ cotg?x = cossec?x

cotg?x + 1 = cossec?x
tg’x

2
senx = —————
1+ tg?x

30.6 Campos de variacéo

Dominio

Contradominio

senx: R

-1 <senx < +1

cosx: R

—1<cosx <+1

tgx: R-— {(Zk + 1)%}

KeZ

—oo < tgx < 4+

coSsecx:

R—{Kn} KeZ

|cossecx| =1

secx: R -— {(Zk +1) g}

|secx| =1

cotgx: R — (km)

keZ

—o0 < cotgx < +o0

30.7 Angulo duplo

sen2x = 2senx.cosx

cos2x = cos’x — sen’x

30.8 Angulo triplo

sen3x = 3senx — 4sen3x

cos3x = 4cos3x — 3cosx

3tgx — tg3x

tg3x =
g-x 1—3tg?x

30.9 Razbes de um angulo em funcdo do cosseno do angulo duplo.

1— cos2x
senx = ’T

1+ cos2x
cosx = ;T

1— cos2x

tgx = ’—
gx 1+ cos2x

. X 1 — cosx
‘92_ 1+ cosx

30.10 Transformacdo em produto (PROSTAFERESE)

A+B

A—-B

send + senB = 2sen >

cos senA — senB = 2cos

2

A—-B

A+B
S sen—
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A+ B A—B A+ B A—B
coSsA + cosB = 2cos > cos > co0SA — cosB = —2sen > sen 2

sen(A + B)

tgA + tgB =
9 9 cosA. cosB

30.11 Razbes do angulo soma ou diferenca

sen(A + B) = senA.cosB + cosA.senB cos(A + B) = cosA.cosB — senA.senB

sen(A — B) = senA.cosB — cosA.senB cos(A — B) = cosA.cosB + senA.senB

tgA + tgB tgA —tgB
tg(A+B) =T 0B tg(A=B) = T A tgB

30.12 Razdes de angulo em funcdo da tangente do angulo metade

2tgx

sen2zx = ———
1+tg?x

1—tg%x

CoS2xX = ——
1+tg?x

2+tg%

1—tg2%

tgx =

30.13 Graficos das funcées

Fung¢ado seno
by
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Fungio tangente
by

Fungio tangente
B cotga F

Fungdo cossecante
™

k
cCOsseca

30.14 Férmulas de BRIGGS
B

:J@—b).(p—c) sz(p—a).(p—o c:j(p—a).(p—b)
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e Para obter as tangentes dos angulos metade se divide membro a membro.
e Paraobter o angulo inteiro utilizamos as férmulas que dao as razées de um angulo em funcéo
do cosseno do angulo duplo.

30.15Teoremas importantes

a b o
send senB senC

2R

Teorema dos senos

a’? =b?+c?>—2.b.c.cosA
Teorema dos cossenos b? = a? + c?—2.a.c.cosB
c?> =a?+b?—-2.a.b.cosC

A+ B
a+b senA+senB tg—

a—b senA — senB tgA

Teorema da tangente

B
2

30.16 Area de um tridngulo

B ab.senC _ bc.senA B ac.senB
o2 2 2

_a+b+c
P=""

Féormula de Heron
S=Jpp—a).p—b).(p—0)

G _abc_p
“PTTUR TR
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30.17 Area de um quadrildtero

A

30.18 Variacdes das funcoes basicas

Fungdo Dominio Contradominio Periodo

2
y =a+ b.sencx R —-b+a<y<b+a pz—n

y =a+ b.coscx —-b+a<y<b+a

y=a+b.tgcx

y =a+b.cotgcx

y = a+ b.seccx y<-b+aVy=b+a

y = a+ b.cosseccx y<-b+aVy=b+a

e Alterando o angulo (x) altera o periodo e, consequentemente, o dominio.
e Multiplicando o angulo por uma constante, o periodo fica dividido e se dividirmos o angulo o
periodo fica multiplicado pela mesma constante.

30.19 Equacoes fundamentais

Procura-se recair em uma das seguintes equagoes:

=(D*.a+kr

x=a+ 2km
x=n—a+2kn}:

senx = m =S€Tl(l=>{

x=a+ 2kn

x=—a+2kn}=>x_

COSX = n = cosa =>{

x=a+ 2knw

tgx:t:tgai{x=n+a+2kn

}=>x=a+kn
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30.20 Funcdes trigonométricas inversas

Arco-seno
seny = x

— T T
y = arcsenx < _ESySE

y=arcsen(x) <« x=sen(y) e ye[—%, }

2
2

X = sen(y)
i, \

y = arcsen(Xx)
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Arco-cosseno

cosy = x
O0<y<m

Y = arccosx <

p=arccos(x) < x=cos(yy e yel[0,m]

A
X = cos(¥) y = arccos(y)

A

—

¥ = arccos(x)
h
m
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Arco-tangente

y=arctgx o | T

y=arctan(x) <= x=tan(y) e ye[—l,l
2 2

2
2

¥ = arctan(y)

Dom =1R

[m=[—£ E]
2 2

lim tan{x) = —m lim arctan{x) = -
x—}—£+ x—>—co 2
p

lim tan(x) = 4+m lirn arctan(x) =
s ET X —» +co 2
2
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Arco-cotangente

cotgy = x
O<y<m
y=arccot(x) <= x=cot(p) e pe(0,m)

A

/- = ¥ =arccot(y)

y = arctgx <

¥ = cot (x)
A

Dam = (0,m) Dam = TR
fm =1R fm = (0,m)

lim cot{x) = +m lim arccot{x) = T
x—>0" x—>»—co

lim cot(x) = —m lim arccoti{x) =0
X0 x—> -+
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Arco-secante

y=arcsec(x) < x=sec(y) @€ yE[O,_
2

x
2

x = arcsec(y)

T B e T

ml::l

e AT T ——

Dam=[0,—g]u ?,J[ Dam=(—00,—1]'-’[15+00)

Fim=(-c0,-1] U [1,+0w) Im=[0,—g]u[%,n]

lim secix)=+m® lim arcsec(x) = x
x> x—>—00 2

i +sec(x) =—m lim arcsec{x) = n
x_)l X —>»+00 2
2
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Arco-cossecante

y=arcesc(x) < x=csc(y) e ye{—%,@] L [0,2}

X =arcsc(y)

Dom = (-w,-1] w [1,+x)

[ 39)5(r]

lim arccsc(x) = 0
x—>»—o0

lim cscix) = +® lim arcesc(x) = 0
x—0" x—>+00

30.21 Transformacdo em produto

sen(a + b) + sen(a — b) = 2sena.cosb
sen(a + b) —sen(a — b) = 2senb.cosa
cos(a + b) + cos(a — b) = 2cosa. cosb
cos(a + b) — cos(a — b) = —2sena.senb
{a+b=p g=Pta p_pa

a—b=gq 2 2

_ p+q p—q _ p+q
cosp + cosq = 2cos > .Cos > COSp — cosq = —2sen >

Pagina - 43




Resumo de Matematica

p+q _ p—q p+q
> senp —senq = 2sen 5 C0s—

senp + senq = 2sen

30.22 Tridngulos retangulos

A b = a.cosC
¢ = b.cotgB

b = c.cotgC

c=b.tgC

b=c.tgB

30.23 Tridangulos obliquangulos
A

a® = b% 4+ c% — 2bc.cosA
b? = a? + c? — 2ac.cosB
c? = a? + b% — 2bc.cosC

a b c

send senB senC

31 GEOMETRIA ANALITICA

31.1 Coordenadas de um ponto razdo de secdo
v

p B (xa,
P () 2. ¥a)

A(xl,y,)

31.2 EquacOes da reta
Y4

o oy

P a
coeficiente angular - m = —
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c
coeficiente linear — —5

Equagdo explicita: (reduzida): y = mx +n

Equagdo implicita: (geral): ax + by +c =0

Equacdo segmentaria: g + % =1
(a, 0) —ponto de encontro com o eixo O,
(0, b) —ponto de encontro com o eixo 0,

Equagdo normal: _ ax+by+c=0
vy .
a b c B

X+ + =0
Vet b2 V@ 1bE N ib?

Ou

xcos0 + ysenf +d =0

Cc

Distancia da reta a origem: d =
& +Va?+b?

Equagao paramétrica:
Y4 \ : y =y, + tcosf

X = xy + tcosa

o cosa e cosf sdo os cossenos diretores da reta.

A

31.3 Disténcia entre dois pontos
Y

Nl

d =/ (x1 — x2)% + (y; — ¥2)?

[T RS [Ny
Bl

=+

31.4 Condicdo de alinhamento
Y L
,.-"6"5("‘3:3'5)

i .;e"e.--'B(xg 1¥2)

‘_.o"'.'A (.I, P b’:)
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31.5 Area de um tridngulo
Vi X

Xyt Vs
1[[*¥r 1
S= S ||¥2 Y2 1
X3 y3 1

X1+ Xy + X3
e

Baricentro do triangulo
1 ty2tys
Yom T3

31.6 Reta que passa por um ponto

R=(@—-y)=mlx-x)

Ponto P(x4,y1)
m = declividade

31.7 Reta que passa por dois pontos

x

Y2—y
Py (x1,¥y1) 5 P(x2,¥7) P=zy—y = Z 1(x—x1)= X1
X2 =X X,

31.8 Ponto médio de um segmento
¥

EaYe

b4

M=Jx—x)*+ @ —y1)?=J(x—x)%+ (¥ — )2

X

31.10Distdncia de um ponto a uma reta
Y

. P,

(d d ax; + by, +c¢
1 e [
- ax+bytc=0 Va2 + b2
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31.11 Retas paralelas

y=mx+n) _ ,
/¢ sdo paralelas sem =m

~ a b
} sdo paralelas se = * 7

ax+by+c=0
ax+b'y+c' =0

y=m'+n

31.12 Retas perpendiculares

y:mx+n} . el 1 ax+by+c=0} . el a
y=m 47 sao paralelas sem = — ax+by+c =0 sdo paralelas se pri

b
bl

31.13 Feixe de retas
Y

> ax+by+c_+a’x+b’y+c’
! va? + b?  Vad'?+ b2

A bissetriz de declive positivo formara um angulo agudo.
A de declive negativo, o obtuso.

B

-4

31.16 Circunferéncia

C=x—-a)?+(y—b)>=R?
Y
C=x?>+y2Ax+By+C=0

_ VAZ + B? —4AC
- 2

se (a,b) é (0,0

C=x*+y?=R?
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A) Tangente e Normal no ponto x, y, da circunferéncia

= _xo—a( )
=Yy }’O—yo_b- X — Xg

Y_
NEY—Y0=—Y0 (x—xp)

B) Eixo radical de duas circunferéncias dadas

Ci=X?>+Y?>+Ax+By+C=0
C,=x>+y?+Ax+By+C' =0

Eixo=x(A-A)+y(B—-B)+(C—-C")=0

Se as circunferéncias forem secantes serd a equacdo de secante comum. Se sdo tangentes serd a equac¢do da

tangente comum.

C) Poténcia de um ponto dado P (X4, Y;)

C=x*+y?+Ax+By+C=0
Poténcia = x;%> +y,;?>+Ax; + By, + C
Se Pot > 0 — P é exterior
Se Pot = 0 = P esta na circunferéncia

Se Pot < 0 —» P éinterior

D) Obtengdo do centro C(xg,y,) e raio R de uma
circunferéncia

x% +y? —2x0x —2yoy +x2 +y2 —R?*=0
Equacgado reduzida da circunferéncia

E) Posicdo de um ponto A(x;,y;) em relagdo a
circunferéncia.

(x —x0)* +(y —¥0)* = R?
(x —x0)%+ (y — y9)? > R? > (A externo)
(x —x0)?+ (y —y9)®> = R? > (Estanacfc)

(x —x0)%+ (¥ — y9)*> < R? > (A interno)

F) Posigdo relativa de uma reta Ax + By + C = 0 com
uma circunferéncia (x — x9)% + (y — yo)? = R?

Ax+By+C=0

(x —x0)* + (¥ —y0)* = RZ} — Equacdo do 2° grau

A= 0 areta é tangente

A> 0 areta é secante
ﬁ
A< 0 aretaéexterna

G) Posi¢des relativas de duas circunferéncias

(x=x0,)" + (¥ =¥0,)" = R?

(x—x0)*+( —y)* =R?
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H) Distancia entre os centros

a= r=x0) + (0 =30,)°

d > R + R, = Circunferéncias externas
d = R + Ry — Circunferéncias tangentes externamente
d = |R — Ry| = Circunferéncias tangentes internamente
IR —R| < d < |R + Ry| = Circunferéncias secantes
0 <d < |R — R,4| = Circunferéncias internas

d = 0 = Circunferéncias concéntricas
(x —x0)? + (y — ¥9)? = R? > (circunferéncia)

I) Tangentes a uma circunferéncia
A(xy,y1) = (ponto A)
y—yz=mx—x) >omx—y+(y, —mx;) =0

J) Feixe de retas pelo ponto A mxo — Yo + (y2 —mxy)

m2+1

dC]_tl = dCltZ =r=

31.17Elipse

Eixo maior AA' = 2a

Eixo menor BB' = 2b

Distancia focal FF' = 2¢

a? + b? = ¢?

e=-<1
a

x2 y2

Excentricidade E = ) + 57= 1 de centro (0,0)

2 _ P2
(x a)+(y B)

a? b2

E

=1 de centro (a, )

T= _ P
—y yO_ azyl'x X1

A) Tangente e normal em um ponto (x, y,)

a’y
NEy—yo=—b2x1-(x—x1)

R1+R2=2a

— 2 4 22
B) Raios vetores Ry = |(q+C)* +yj

Ry = |(x; —C)? +y}
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c? =a? + b?

31.18 Hipérbole

Eixo maior: AA' = 2a
Eixo menor: BB' = 2b
Distancia focal: FF' — 2a

Excentricidade: e = % >1

2
x
H i 1 de centro (0,0)

H

_ 2 — 2
(x=0)° (¥ zﬁ) =1 de centro (a,B)

a? b
b?x,

A) Tangente e normal em um ponto (x,, y,) da hipérbole

T=y—y,= e —
Yy —Yo 2y, (x —xp)

2
a“Xxo
- (x —xo)

N=y—y, = b’

B) Equacdo das Assintotas

Sao tangentes a curva no infinito
Sea=b

C) Hipérbole equilatera

HE = x?> —y? = a?
Ai=y=x

A, =y=—x

2

Fazendo um giro de 45° e referindo a curva a suas assintotas se transforma xy = K, sendo K = .

Pardbola

ZIRETAIZ =+

diretriz x = — —
2

P = parametro

F(;O) foco

P =y%=2Px
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X

Tangente:y —y, = p.=2 (x — xq)
Yo

A) Tangente e normal em um ponto (xg, y,) da

. _ 1y
pardbola Normal:y —yy = ——=.—.(x — x¢)
P xq

Se a diretriz é paralela ao eixo 0X, serd da forma y = 2gx2. Se o centro n3o é a origem, a parabola toma a forma
de um trindmio do segundo grau: y = ax? + bx + ¢

31.20 Obtencdo do tipo de curva dada uma equacdo do 22 grau

Equacdo do segundo grau: Ax?> +By?> +Cxy+Dx+Ey+F =0
A=B
C?>—-4AB <0 Elipse ou circunferéncia se e
c=20

C2—44AB >0 Hipérbole
C?—4AB =0 Parabola

32 EQUACOES

32.1 Expressao Geral
| F(x) =apx™ + a;x™ * +apx" 2+ -4ap x+a, =0

32.2 Raizes ou zeros de F(x) = 0
Todo nimero «a (real ou complexo) tal que F(a) = 0, ou seja, os valores de x que anulam o polindmio F(x).

32.3 Teorema Fundamental da Algebra
“Toda equacdo polinomial de grau n (n > 0), admite pelo menos uma raiz real ou complexa”.
“Toda equagao polinomial de graun > 0 tem no campo complexo pelo menos uma raiz e no maximo n raizes”

324 Decomposicdo de uma Equacdo
Seja a equacgao de grau n:
F(x) = apx"+ ax™ ' + apx™ 2+ -+ ap,_1x + a, =0 com ay # 0.

Se x4, X3, X3, ,X, S3o raizes dessa equagdo e a, o coeficiente do termo de maior grau a equag¢do pode ser
decomposta no produto: F(x) = ag(x — x1)(x — x5) (x — x3) ... (x — xp,).

32.5 Relac6es de Girard

ax®?+bx+c=0 ax3+bx’+cx+d=0
b b
x1+x2=—a x1+x2+X3=——

Cc
xle = a x1x2 + x1x3 + x2x3 =

d
X1.X2. X3 = _E

a

32.6 Raizes multiplas
e Definicdo: Se F(x) = (x —a)™. Q(x) onde (m é natural) e Q(a) # 0, diremos que a é uma raiz de
multiplicidade m da equacdo F(x) = 0.

Observar que a decomposicao fica:
F(x) = ag(x — x)™. (x — )™ ... (x — xp)mp
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Com: my + my + m3 + ---.+m, = n (grau da equagao)

e Pesquisa de raizes multiplas:
Se a é uma raiz de multiplicidade m de F(x) = 0, entdo a serd também raiz de F'(x) = 0 com multiplicidade m — 1.
F'(x) ¢é a derivada de F(x).

Ex: Na equacdo: x> — 4x2 +5x —2 = 0 asraizesx; = 1; x, = 1; x3 = 2 ou seja 1 de multiplicidade dois.

F'(x) = 3x? —8x + 5 = 0 —raizes x; = 1 (multiplicidade um) e x, = g
32.7 Raizes Racionais

Dada a equacao algébrica:

F(x) = apx™ + a;x™ 1 + -+ . +a, = 0, de COEFICIENTES INTEIROS, se o ndmero racional s (P€Z qelrepe

p édivisor de a,
q édivisor de a,

q primos entre si) forraizde F(x) = 0 entéo:{

32.8 Raizes Irracionais

Se uma equacdo admite a raiz irracional a + Vb, com multiplicidade m, admitird também a raiz conjugada a — Vb
com multiplicidade m.

Ex: compor a equagcio sabendo-se que 1 e (—V/2) s3o raizes:

x; =1

X, = V2

X3 = +V2

F(x) = (x —x)(x —x)(x —x3) = 0

F(x)=x3—x2-2x+2=0

32.9 Raizes Reais

Teorema de BOLZANO

Seja uma equagdo polinomial F(x) = 0 de coeficientes reais, e a e b dois nimeros reais tais que (a < b):
e 12SeP(a) X P(b) < 0 — n2impar de raizes entre a e b.
e 2°SeP(a) X P(b) >0 — n2parderaizesentrea e b.

Consequéncias:
12 Toda equacdo algébrica F(x) = 0 de coeficientes reais e grau impar, apresenta pelo menos uma raiz real de sinal

contrario ao sinal de a,,.
22 Se for de grau par teremos:
a, < 0 — pelo menos duas raizes de sinais contrarios.
a, < 0 — um numero par de raizes reais do mesmo sinal duas a duas.

Exemplo: Determinar m para que x3 — 2x? + 3x — m = 0 tenha pelo menos uma raizentre O e 1.
Resposta: 0 <m < 2.

32.10 Raizes Complexas
Para toda equacdo algébrica de coeficientes reais sé pode ter um numero par de raizes complexas. Se z = a + bi é
raiz de multiplicidade m, entdo z = a — bi serad também raiz de multiplicidade m.
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